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Lecture 5: Linear Programming: Duality
Notes by Ola Svensson1

In this lecture we do the following:

• We introduce duality of linear programming.

• We prove weak-duality and state strong-duality.

• We then see how strong-duality implies complementarity slackness.

These notes are based on [1].

1 Linear Programming Duality

1.1 Intuition

Consider the following linear program:

Minimize 7x1 + 3x2

Subject to: x1 + x2 ≥ 2, / · y1
3x1 + x2 ≥ 4, / · y2
x1, x2 ≥ 0.

We are looking for the optimal solution OPT to this LP. To find the solution we may ask two types of
questions (to find the upper and lower bound on OPT). Is there a solution of cost ≤ 10? (Is OPT ≤ 10)?
An answer to this type of questions is quite simple; we just find a feasible solution to the LP with
objective function ≤ 10 e.g. x1 = x2 = 1. Is there no better solution? (Is OPT ≥ 10)? Observe that we
can bound the objective function value using constraints that every feasible solution satisfies. From the
first constraint we get

7x1 + 3x2 ≥ x1 + x2 ≥ 2.

Thus OPT ≥ 2. Similarly from the second constraint we get OPT ≥ 4. To make a better lower bound
we will need to be more clever. Let’s take a linear combination of the constraints with coefficients y1, y2
correspondingly. y1, y2 should be non-negative because multiplying a constraint by negative number
would flip the inequality. By taking y1 = 1, y2 = 2 we obtain

7x1 + 3x2 ≥ (x1 + x2) + 2(3x1 + x2) ≥ 2 + 2 · 4 = 10.

For each constraint of the given LP we associate a dual variable yi denoting the weight of the i-th
constraint. What kind of variables can we take to get a valid lower bound? How should we pick coeffi-
cients to maximize lower bound for OPT? First of all we are interested in lower-bounding the objective
function. Thus linear combination of primal constraints cannot exceed primal objective function. As
mentioned earlier yi ≥ 0. In this way we get the following (dual) linear program for y1, y2:

Maximize 2y1 + 4y2 (lower bound as tight as possible)

Subject to: y1 + 3y2 ≤ 7, (coefficient of x1)

y1 + y2 ≤ 3, (coefficient of x2)

y1, y2 ≥ 0.

Let’s try now to formalize this approach.
1Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain

inconsistent notation, typos, and omit citations of relevant works.
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1.2 General case

Consider the following linear program with n variables xi for i ∈ [1, n] and m constraints:

Minimize
n∑

i=1

cixi

Subject to:
n∑

i=1

Ajixi ≥ bj ∀j = 1, . . . ,m,

x ≥ 0.

Then, the dual program has m variables yj for j ∈ [1,m] and n constraints:

Maximize
m∑
j=1

bjyj

Subject to:
m∑
j=1

Ajiyj ≤ ci ∀i = 1, . . . , n,

y ≥ 0.

Each variable yj in the dual program corresponds to the weight of one of constraints from the primal
LP. We have n constraints in the dual, one for every primal variable xi.
Remark We showed how to produce dual program for minimization problem. Similar approach works
also for maximization problems. Also every maximization problem can be reduced to a minimization
one. We replace xi with −xi in constraints and objective function obtaining minimization problem.

Remark One can verify that if we take the dual of the dual problem, we get back to the primal
problem, as we should expect. Finding the dual linear program is an automatic procedure.

1.3 Duality Theorems

Let’s focus now on the solutions of both LPs. In our example optimal solutions to primal and dual
problems coincided. We now present two theorems that connect primal and dual solutions.

Theorem 1 (Weak Duality) If x is primal-feasible (meaning that x is a feasible solution to the primal
problem) and y is dual-feasible, then

n∑
i=1

cixi ≥
m∑
j=1

bjyj .

Proof Let’s rewrite the right hand side

m∑
j=1

bjyj ≤
m∑
j=1

n∑
i=1

Ajixiyj =

n∑
i=1

 m∑
j=1

Ajiyj

xi ≤
n∑

i=1

cixi.

Here we used the fact that x, y ≥ 0 for the inqualities.

This theorem tells us that every dual-feasible solution is a lower bound to any primal solution. This
is intuitive: every primal feasible solution satisfies primal constraints, dual feasible solution gives us a
way of lower bounding primal solution using primal constraints. Moreover from Weak Duality we can
conclude that optimal solution to primal program is lower bounded by optimal solution to dual program.
In fact optimal solutions to primal and duals linear programs coincide, leading to the following theorem.
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Theorem 2 (Strong Duality) If x is an optimal primal solution and y is an optimal dual solution,
then

n∑
i=1

cixi =

m∑
j=1

bjyj .

Furthermore, if the primal problem is unbounded, then the dual problem is infeasible and analogously if
the dual is unbounded, the primal is infeasible.

We omit the proof of strong duality for now but I encourage you to understand one of the many proofs!

1.4 Example: Maximum cardinality matching and Vertex Cover on Bipar-
tite Graphs

Let G = (A ∪B,E) be a bipartite graph and let M be a matching. Let xe be a variable corresponding
to taking edge e ∈ M . We want to maximize the cardinality of M while assuring that every vertex has
at most one neighboring edge belonging to M . Writing those conditions in a form of LP gives us:

Maximize
∑
e∈E

xe

Subject to:
∑

e=(a,b)∈E

xe ≤ 1 ∀a ∈ A,

∑
e=(a,b)∈E

xe ≤ 1 ∀b ∈ B,

xe ≥ 0.

Thus the dual program looks like this:

Minimize
∑

v∈A∪B

yv

Subject to: ya + yb ≥ 1 for (a, b) ∈ E,

yv ≥ 0.

One can easily notice that this LP is vertex cover relaxation. By weak-duality, we have that |M | ≤ |C|
for any matching M and vertex cover C. Moreover, since both the primal and the dual are integral for
bipartite graphs, strong LP-duality implies König’s theorem:

Theorem 3 (König 1931) Let M⋆ be a maximum cardinality matching and C⋆ be a minimum vertex
cover of a bipartite graph. Then

|M⋆| = |C⋆|.
Another well-known duality that is also a special case of LP-duality is the max-flow= min-cut theo-

rem.

1.5 Complementarity Slackness

Strong duality gives an important relationship between primal and dual optimal solutions.

Theorem 4 Let x ∈ Rn be a feasible solution to the primal and let y ∈ Rm be a feasible solution to the
dual. Then

x, y are both optimal solutions ⇐⇒


xi > 0 ⇒ ci =

m∑
j=1

Ajiyj ∀i = 1, . . . , n,

yj > 0 ⇒ bj =

n∑
i=1

Ajixi ∀j = 1, . . . ,m.
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Proof We will apply the strong duality theorem to the weak duality theorem proof.

⇒ Let x be the optimal primal solution. From the weak duality theorem proof, we have that

m∑
j=1

bjyj ≤
m∑
j=1

n∑
i=1

Ajixiyj =

n∑
i=1

 m∑
j=1

Ajiyj

xi ≤
n∑

i=1

cixi. (1)

Here we used the fact that x, y ≥ 0. On the other hand by the strong duality theorem
m∑
j=1

bjyj =

n∑
i=1

cixi.

So in (1) there are equalities everywhere. Thus

n∑
i=1

cixi =

n∑
i=1

 m∑
j=1

Ajiyj

xi ⇒ cixi =

 m∑
j=1

Ajiyj

xi for i = 1, . . . n.

And finally for every xi, i = 1, . . . n:

xi ̸= 0 cixi =

 m∑
j=1

Ajiyj

xi ⇒ ci =

 m∑
j=1

Ajiyj

 .

⇐ Similarly to the previous part we know that:

xici =

 m∑
j=1

Ajiyj

xi ∀i = 1, . . . , n,

yjbj =

(
n∑

i=1

Ajixi

)
yj ∀j = 1, . . . ,m.

Thus
m∑
j=1

bjyj =

m∑
j=1

n∑
i=1

Ajixiyj =

n∑
i=1

 m∑
j=1

Ajiyj

xi =

n∑
i=1

cixi.

The above equality is equivalent to x, y being optimal solutions to the primal and the dual linear
programs, respectively. Indeed for feasible solution x⋆ to the primal we have by weak duality

n∑
i=1

cix
⋆
i ≥

m∑
j=1

bjyj =

n∑
i=1

cixi.

Thus x is an optimal solution to the primal program and similarly y is an optimal solution to the
dual.
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